Main Article Content

Abstract

Successful gene transfer therapy (GTT) provides a functional copy of a gene to appropriate tissues for affected patients. While technically difficult, GTT holds great promise for treating and even curing previously fatal diseases.


GTT for Spinal Muscular Atrophy is available commercially and ongoing studies continue to show it is safe and effective. Subclinical liver dysfunction is more common in older, heavier children receiving higher vial loads. Human trials support preclinical studies showing early timing of therapy is important.


GTT for Duchene Muscular Dystrophy has required strategic approaches to create mini- and micro-dystrophin genes that will fit into available viral vectors. There are multiple ongoing studies that overall demonstrate good safety and efficacy.


GTT for X-Linked Myotubular Myopathy is being studied in an ongoing trial that has shown improvement in respiratory function (including ventilator independence), neuromuscular function, and histopathological evaluation. Three patients with severe cholestatic liver dysfunction have died. Evaluation is ongoing to better understand these events.


While GTT for neuromuscular disorders holds significant promise, it is not without risks and requires in-depth knowledge of the disease, abundant pre-clinical work, careful patient education, and ongoing patient care. There are a number of key questions that must be considered regarding the feasibility of expanding GTT to new disorders


These examples illustrate how advances in GTT benefit children on a population level and may themselves benefit from early detection by NBS. By becoming involved in advocacy at state and federal levels, families and physicians can impact newborn screening policy and implementation regarding these disorders.

Keywords

gene transfer therapy gene therapy Duchenne Muscular Dystrophy Spinal Muscular Atrophy X-Linked Myotubular Myopathy Centronuclear Myopathy newborn screening Pompe Disease

Article Details

How to Cite
Martin, M., Ream, M., Kuntz, N., Mathews, K., & Connolly, A. (2021). Symposium: Neuromuscular disease - Gene transfer for children: What we know now. Journal of the International Child Neurology Association, 1(1). https://doi.org/10.17724/jicna.2021.219

References

    1. Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet. 1997;16(3):265-9.
    2. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, Swoboda KJ, Reyna SP, Sakonju A, Darras BT, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883-91.
    3. Vijzelaar R, Snetselaar R, Clausen M, Mason AG, Rinsma M, Zegers M, Molleman N, Boschloo R, Yilmaz R, Kuilboer R, et al. The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One. 2019;14(7):e0220211.
    4. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med. 2017;377(18):1713-22.
    5. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27(1):59-65.
    6. Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, Kang PB, Foley AR, Yang ML, Martens WB, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810-7.
    7. Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, Swoboda KJ, Reyna SP, Sakonju A, Darras BT, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016;3(2):132-45.
    8. Hoy SM. Onasemnogene Abeparvovec: First Global Approval. Drugs. 2019;79(11):1255-62.
    9. Kirschner J, Butoianu N, Goemans N, Haberlova J, Kostera-Pruszczyk A, Mercuri E, van der Pol WL, Quijano-Roy S, Sejersen T, Tizzano EF, et al. European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol. 2020;28:38-43.
    10. AveXis I. Gene Replacement Therapy Clinical Trial for Participants with Spinal Muscular Atrophy Type 1 (STR1VE). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03306277?term=zolgensma&recrs=e&cond=SMA&draw=2&rank=3. [Accessed 28 October 2020].
    11. AveXis I. Single-Dose Gene Replacement Therapy Clinical Trial for Patients with Spinal Muscular Atrophy Type 1 (STRIVE-EU). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03461289?term=zolgensma&recrs=e&cond=SMA&draw=2&rank=2. [Accessed 28 October 2020].
    12. AveXis I. Study of Intrathecal Administration of Onasemnogene Abeparvovec-xioi for Spinal Muscular Atrophy (STRONG). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03381729?term=zolgensma&recrs=g&cond=SMA&draw=2&rank=1. [Accessed 28 October 2020].
    13. Waldrop MA, Karingada C, Storey MA, Powers B, Iammarino MA, Miller NF, Alfano LN, Noritz G, Rossman I, Ginsberg M, et al. Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics. 2020;146(3).
    14. Pauline Samia AK, Russell Dale, Silvia Tenembaum, Chahnez Charif Triki, Anaita Hegde, Richard Idro, Edward Kija, Jo M Wilmshurst, Ingrid Tein, Haluk Topaloglu. Position Statement: Emerging genetic therapies for rare disorders. Journal of the International Child Neurology Association. 2019;1(1).
    15. Hoffman EP, Knudson CM, Campbell KP, Kunkel LM. Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature. 1987;330(6150):754-8.
    16. Muntoni F, Wilson L, Marrosu G, Marrosu MG, Cianchetti C, Mestroni L, Ganau A, Dubowitz V, Sewry C. A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart. J Clin Invest. 1995;96(2):693-9.
    17. Taylor PJ, Betts GA, Maroulis S, Gilissen C, Pedersen RL, Mowat DR, Johnston HM, Buckley MF. Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy. PLoS One. 2010;5(1):e8803.
    18. England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaarn EE, Bulman DE, Harris JB, Davies KE. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990;343(6254):180-2.
    19. Duan D, Mendell J, editors. Muscle Gene Therapy. 2 ed. Cham, Switzerland: Springer; 2019.
    20. Pfizer. A Phase 3 Study to Evaluate the Safety and Efficacy of PF-06939926 for the Treatment of Duchenne Muscular Dystrophy. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04281485?term=pfizer&cond=Duchenne+Muscular+Dystrophy&draw=2&rank=1. [Accessed 28 October 2020].
    21. Solid Biosciences L. Microdystrophin Gene Transfer Studye in Adolecents and Children with DMD (IGNITE DMD). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03368742?term=solid+bioscience&cond=Duchenne+Muscular+Dystrophy&draw=2&rank=1. [Accessed 28 October 2020].
    22. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, et al. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med. 2010;363(15):1429-37.
    23. Mendell JR, Sahenk Z, Lehman K, Nease C, Lowes LP, Miller NF, Iammarino MA, Alfano LN, Nicholl A, Al-Zaidy S, et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020.
    24. Potter RA, Griffin DA, Heller KN, al. e. Dose escalation study of systematically delevered AAVrh74.MHCK7.micro-dystrophin in the mdx mouse model of DMD. In: American Society of Gene & Cell Therapy Annual Meeting. Chicago, Illinois; 2018.
    25. Sarepta Therapeutics I. A Randomized, Double-blind, Placebo-controlled Study of SRP-9001 for Duchenne Muscular Dystrophy (DMD). Available from: https://www.clinicaltrials.gov/ct2/show/NCT03769116?term=sarepta&cond=Duchenne+Muscular+Dystrophy&draw=2&rank=9. [Accessed 28 October 2020].
    26. Vandersmissen I, Biancalana V, Servais L, Dowling JJ, Vander Stichele G, Van Rooijen S, Thielemans L. An integrated modelling methodology for estimating the prevalence of centronuclear myopathy. Neuromuscul Disord. 2018;28(9):766-77.
    27. Annoussamy M, Lilien C, Gidaro T, Gargaun E, Che V, Schara U, Gangfuss A, D'Amico A, Dowling JJ, Darras BT, et al. X-linked myotubular myopathy: A prospective international natural history study. Neurology. 2019;92(16):e1852-e67.
    28. Raess MA, Friant S, Cowling BS, Laporte J. WANTED - Dead or alive: Myotubularins, a large disease-associated protein family. Adv Biol Regul. 2017;63:49-58.
    29. Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A. 2002;99(23):15060-5.
    30. Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest. 2011;121(1):70-85.
    31. Amoasii L, Hnia K, Chicanne G, Brech A, Cowling BS, Muller MM, Schwab Y, Koebel P, Ferry A, Payrastre B, et al. Myotubularin and PtdIns3P remodel the sarcoplasmic reticulum in muscle in vivo. J Cell Sci. 2013;126(Pt 8):1806-19.
    32. Amburgey K, Tsuchiya E, de Chastonay S, Glueck M, Alverez R, Nguyen CT, Rutkowski A, Hornyak J, Beggs AH, Dowling JJ. A natural history study of X-linked myotubular myopathy. Neurology. 2017;89(13):1355-64.
    33. Beggs AH, Byrne BJ, De Chastonay S, Haselkorn T, Hughes I, James ES, Kuntz NL, Simon J, Swanson LC, Yang ML, et al. A multicenter, retrospective medical record review of X-linked myotubular myopathy: The recensus study. Muscle Nerve. 2018;57(4):550-60.
    34. Graham RJ, Muntoni F, Hughes I, Yum SW, Kuntz NL, Yang ML, Byrne BJ, Prasad S, Alvarez R, Genetti CA, et al. Mortality and respiratory support in X-linked myotubular myopathy: a RECENSUS retrospective analysis. Arch Dis Child. 2020;105(4):332-8.
    35. Lawlor MW, Beggs AH, Buj-Bello A, Childers MK, Dowling JJ, James ES, Meng H, Moore SA, Prasad S, Schoser B, et al. Skeletal Muscle Pathology in X-Linked Myotubular Myopathy: Review With Cross-Species Comparisons. J Neuropathol Exp Neurol. 2016;75(2):102-10.
    36. Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM, Grange RW, Elverman MR, Denard J, Veron P, Buscara L, et al. Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Mol Ther. 2017;25(4):839-54.
    37. Therapeutics A. A Clinical Assessment Study in X-Linked Myotubular Myopathy (XLMTM) Subjects (INCEPTUS). Available from: https://clinicaltrials.gov/ct2/show/NCT02704273. [Accessed 3 October 2020].
    38. Bonnemann CG, Sheih PB, Kuntz NL, Muller-Felber W, Blaschek A, Foley AR, Saade DN, Lawlor MW, Servais L, Miller W, et al. ASPIRO Gene Therapy Trial in X-Linked Myotubular Myopathy (XLMTM): Update on Safety and Efficiacy. In: World Muscle Society WMS25 Virtual Congress, Sep 28 - Oct 2, 2020. Virtual Congress; 2020.
    39. Duong T, Harding G, Mannix S, Abel C, Phillips D, Alfano LN, Bonnemann CG, Lilien C, Lowes L, Servais L, et al. Use of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) in X-Linked Myotubular Myopathy: Content Validity and Psychometric Performance. J Neuromuscul Dis. 2020.
    40. Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A. Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr. 1999;134(2):206-14.
    41. Wagner K, Hugo W. Moser Research Institute at Kennedy Krieger I. A Trial of PF-06252616 in Ambulatory Participants with LGMD2I. Available from: https://www.clinicaltrials.gov/ct2/show/NCT02841267?term=treatment&cond=LGMDR9&draw=2&rank=1. [Accessed 28 October 2020].
    42. Wu B, Shah SN, Lu P, Bollinger LE, Blaeser A, Sparks S, Harper AD, Lu QL. Long-Term Treatment of Tamoxifen and Raloxifene Alleviates Dystrophic Phenotype and Enhances Muscle Functions of FKRP Dystroglycanopathy. The American journal of pathology. 2018;188(4):1069-80.
    43. Cataldi MP, Lu P, Blaeser A, Lu QL. Ribitol restores functionally glycosylated α-dystroglycan and improves muscle function in dystrophic FKRP-mutant mice. Nat Commun. 2018;9(1):3448.
    44. Vannoy CH, Leroy V, Lu QL. Dose-Dependent Effects of FKRP Gene-Replacement Therapy on Functional Rescue and Longevity in Dystrophic Mice. Molecular therapy Methods & clinical development. 2018;11:106-20.
    45. Gicquel E, Maizonnier N, Foltz SJ, Martin WJ, Bourg N, Svinartchouk F, Charton K, Beedle AM, Richard I. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Hum Mol Genet. 2017;26(10):1952-65.
    46. Yin Q, Wang H, Li N, Ding Y, Xie Z, Jin L, Li Y, Wang Q, Liu X, Xu L, et al. Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell research. 2020;30(2):133-45.
    47. Hamel J, Tawil R. Facioscapulohumeral Muscular Dystrophy: Update on Pathogenesis and Future Treatments. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2018;15(4):863-71.
    48. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, et al. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 2010;6(10):e1001181.
    49. Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res. 2020;1726:146491.
    50. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M. Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A. 2009;106(6):2029-34.
    51. Miguet M, Faivre L, Amiel J, Nizon M, Touraine R, Prieur F, Pasquier L, Lefebvre M, Thevenon J, Dubourg C, et al. Further delineation of the MECP2 duplication syndrome phenotype in 59 French male patients, with a particular focus on morphological and neurological features. J Med Genet. 2018;55(6):359-71.
    52. Potter RA, Griffin DA, Sondergaard PC, Johnson RW, Pozsgai ER, Heller KN, Peterson EL, Lehtimaki KK, Windish HP, Mittal PJ, et al. Systemic Delivery of Dysferlin Overlap Vectors Provides Long-Term Gene Expression and Functional Improvement for Dysferlinopathy. Hum Gene Ther. 2018;29(7):749-62.
    53. Sondergaard PC, Griffin DA, Pozsgai ER, Johnson RW, Grose WE, Heller KN, Shontz KM, Montgomery CL, Liu J, Clark KR, et al. AAV.Dysferlin Overlap Vectors Restore Function in Dysferlinopathy Animal Models. Ann Clin Transl Neurol. 2015;2(3):256-70.
    54. Morgan JE, Partridge TA. Muscle satellite cells. The international journal of biochemistry & cell biology. 2003;35(8):1151-6.
    55. Brantly ML, Chulay JD, Wang L, Mueller C, Humphries M, Spencer LT, Rouhani F, Conlon TJ, Calcedo R, Betts MR, et al. Sustained transgene expression despite T lymphocyte responses in a clinical trial of rAAV1-AAT gene therapy. Proc Natl Acad Sci U S A. 2009;106(38):16363-8.
    56. Pass KA, Lane PA, Fernhoff PM, Hinton CF, Panny SR, Parks JS, Pelias MZ, Rhead WJ, Ross SI, Wethers DL, et al. US newborn screening system guidelines II: follow-up of children, diagnosis, management, and evaluation. Statement of the Council of Regional Networks for Genetic Services (CORN). J Pediatr. 2000;137(4 Suppl):S1-46.
    57. American College of Medical Genetics Newborn Screening Expert G. Newborn screening: toward a uniform screening panel and system--executive summary. Pediatrics. 2006;117(5 Pt 2):S296-307.
    58. Lloyd-Puryear M, Therrell B. Newborn Screening Services: Then and Now. Rockville, Maryland: U.S. Department of Health and Human Services: Health Resources and Services Administration, Maternal and Child Health Bureau; 2010.
    59. Hopkins PV, Campbell C, Klug T, Rogers S, Raburn-Miller J, Kiesling J. Lysosomal storage disorder screening implementation: findings from the first six months of full population pilot testing in Missouri. J Pediatr. 2015;166(1):172-7.
    60. Wasserstein MP, Caggana M, Bailey SM, Desnick RJ, Edelmann L, Estrella L, Holzman I, Kelly NR, Kornreich R, Kupchik SG, et al. The New York pilot newborn screening program for lysosomal storage diseases: Report of the First 65,000 Infants. Genet Med. 2019;21(3):631-40.
    61. Pruniski B, Lisi E, Ali N. Newborn screening for Pompe disease: impact on families. J Inherit Metab Dis. 2018;41(6):1189-203.
    62. Broomfield A, Fletcher J, Davison J, Finnegan N, Fenton M, Chikermane A, Beesley C, Harvey K, Cullen E, Stewart C, et al. Response of 33 UK patients with infantile-onset Pompe disease to enzyme replacement therapy. J Inherit Metab Dis. 2016;39(2):261-71.
    63. Chien YH, Lee NC, Chen CA, Tsai FJ, Tsai WH, Shieh JY, Huang HJ, Hsu WC, Tsai TH, Hwu WL. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr. 2015;166(4):985-91 e1-2.
    64. Hundsberger T, Schoser B, Leupold D, Rosler KM, Putora PM. Comparison of recent pivotal recommendations for the diagnosis and treatment of late-onset Pompe disease using diagnostic nodes-the Pompe disease burden scale. J Neurol. 2019;266(8):2010-7.
    65. Lisi EC, Gillespie S, Laney D, Ali N. Patients' perspectives on newborn screening for later-onset lysosomal storage diseases. Mol Genet Metab. 2016;119(1-2):109-14.
    66. Colella P, Mingozzi F. Gene Therapy for Pompe Disease: The Time is now. Hum Gene Ther. 2019;30(10):1245-62.
    67. Goodkey K, Aslesh T, Maruyama R, Yokota T. Nusinersen in the Treatment of Spinal Muscular Atrophy. Methods in molecular biology (Clifton, NJ). 2018;1828:69-76.
    68. Kraszewski JN, Kay DM, Stevens CF, Koval C, Haser B, Ortiz V, Albertorio A, Cohen LL, Jain R, Andrew SP, et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet Med. 2018;20(6):608-13.
    69. Chien YH, Chiang SC, Weng WC, Lee NC, Lin CJ, Hsieh WS, Lee WT, Jong YJ, Ko TM, Hwu WL. Presymptomatic Diagnosis of Spinal Muscular Atrophy Through Newborn Screening. J Pediatr. 2017;190:124-9 e1.
    70. Maternal and Child Health Bureau: Evidence-based Review of Newborn Screening for Spinal Muscular Atrophy (SMA): Final Report (v5.2).
    71. SMA C. Newborn Screening for SMA. Available from: https://www.curesma.org/newborn-screening-for-sma/. [Accessed 3 October 2020].
    72. Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AH, Kissel JT. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85(3):408-13.
    73. Boardman FK, Young PJ, Griffiths FE. Impairment Experiences, Identity and Attitudes Towards Genetic Screening: the Views of People with Spinal Muscular Atrophy. J Genet Couns. 2018;27(1):69-84.
    74. Drummond LM. Creatine phosphokinase levels in the newborn and their use in screening for Duchenne muscular dystrophy. Arch Dis Child. 1979;54(5):362-6.
    75. Bradley DM, Parsons EP, Clarke AJ. Experience with screening newborns for Duchenne muscular dystrophy in Wales. BMJ. 1993;306(6874):357-60.
    76. Moat SJ, Bradley DM, Salmon R, Clarke A, Hartley L. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049-53.
    77. Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304-13.
    78. Cyrus A, Street N, Quary S, Kable J, Kenneson A, Fernhoff P. Clinic-based infant screening for duchenne muscular dystrophy: a feasibility study. PLoS Curr. 2012:e4f99c5654147a.
    79. Scheuerbrandt G, Lundin A, Lovgren T, Mortier W. Screening for Duchenne muscular dystrophy: an improved screening test for creatine kinase and its application in an infant screening program. Muscle Nerve. 1986;9(1):11-23.
    80. Wood MF, Hughes SC, Hache LP, Naylor EW, Abdel-Hamid HZ, Barmada MM, Dobrowolski SF, Stickler DE, Clemens PR. Parental attitudes toward newborn screening for Duchenne/Becker muscular dystrophy and spinal muscular atrophy. Muscle Nerve. 2014;49(6):822-8.