CONNERS’ CONTINUOUS PERFORMANCE TEST PROFILE IN CHILDREN WITH ATTENTION DEFICIT HYPERACTIVITY DISORDER IN RELATION TO THEIR INTELLECTUAL PERFORMANCE

Maria Celeste Puga1, Esteban Vaucheret1, María José García Basalo1, Mariana Leist1, Florencia Baliana1, Isabel María Lasombres1, Victoria Madariaga1, Mariela Corletto1, Guillermo Agosta1. 1Hospital Italiano de Buenos Aires, Argentina.

Introduction: Attention Deficit Hyperactivity Disorder (ADHD) constitutes a high prevalence disorder. The effect of intelligence in vigilance tasks has been studied, with discordant results. Therefore we are interested in comparing the Conners’ Continuous Performance Test II (CPTII) performance according to intellectual performance.

Aim: To analyse CPT II profiles in children with ADHD in relation to their intellectual performance (IP).

Methods and Materials: Descriptive, analytical, cross sectional study. We included patients with ADHD diagnosis (DSM IV). Patients were divided into two groups according to their Full scale intellectual quotient (FIQ, Weschler scale): Normal intellectual performance (IP) for those with FIQ 80 and above, or low IP for those with FIQ 79 or below. The Conners’ Parent Rating Scale - Revised (short version) was also administered.

Results: 125 patients were included, 72% belonged to the normal IP group. The age in this group was lower (9.4 years vs 10.5; p=0.03), and the FIQ score was 93.25 vs. 68.42 (p<0.001). Patients from the low IP group presented more omissions when compared to normal IP group (63.28 vs 54.87; p <0.02) and slower response time (66.28 vs 55.86; p<0.001). Both groups reported above cut-off scores for inattention and hyperactivity indexes in Conners’ scale.

Conclusion: Profiles in CPT differed according to Intellectual Performance. We observed that CPTI was more useful in detecting attention failures in patients with low IP, despite the fact that both groups had clinical indicators of inattention.

References:

1. Corleto1, Guillermo Agosta1. 1Hospital Italiano de Buenos Aires, Argentina.

SCHOOLING OF EPILEPTIC CHILDREN: FACTORS ASSOCIATED WITH THE NEED FOR SCHOOL SUPPORT

María José García Basalo1, Mariana Leist, María Celeste Puga, Mariela Corletto, María Florencia Baliana, Isabel María Lasombres, Esteban Vaucheret Paz, Christy Ann Ekonen, Marina Aberrastury, Guillermo Agosta. 1Hospital Italiano de Buenos Aires, Argentina

Introduction: Patients with epilepsy often have academic difficulties, even with normal intellectual performance.

Aim: To determine the prevalence of school support (SS) in epileptic patients and to analyze associated factors.

Material and methods: Descriptive analytical cross-sectional study. Patients were divided into two groups: Idiopathic Epilepsy (IE) and Non Idiopathic Epilepsy (NIE). SS was defined by the need for grade retention, mainstream schooling with coaching assistance, or special education.

Results: We included 175 patients; the median age was 4 years (IQR 2-8). 51% of the population belonged to the IE group. The overall prevalence of SS was 34%. However, the need of SS in NIE was 52% vs. 13.4% in IE (p<0.01). Other variables associated with SS in the univariate analysis were: refractory epilepsy OR 4.09 (95% CI 1.82 to 9.26), polytherapy OR 3.68 (95% CI 1.80 to 7.57) and intellectual disability OR 8.90 (95% CI 3.68 to 20.99); p < 0.01. In the multivariate analysis, the variables that were independently associated were NIE OR 5.73 (95% CI 2.52-13.01); p <0.01, and intellectual disability OR 4.55 (95% CI 2.02-10.20); p <0.01. ROC analysis of this model showed an area under the curve of 0.79.

Conclusions: Epileptic patients have a high prevalence of school support. The variables that were independently associated were the presence of non- idiopathic epilepsy and intellectual disability. This group of patients should be closely monitored for possible struggles in school.

References:

5. www.icnapedia.org
FP55
FMRI INTRON 1 METHYLATION ANALYSIS: AN EPGENETIC BIOMARKER FOR THE NEURODEVELOPMENTAL PHENOTYPE OF CHILDREN WITH FXS.
Marta Arpino1,2, Xin Li1, Howard Slater1,2, Cheryl Dissanyake1, David Amor1,2, Yoshimi Inaba2, Laura Rodwell1,2, Lesley Brehthorn1,2, David Godfrey1,2.
1University of Melbourne, Department of Paediatrics, Melbourne, Australia; 2 Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia; 3Victorian Clinical Genetics Services, Melbourne, Australia; 4The Ola Tennison Autism Research Centre, School of Psychological Science, La Trobe University, VIC, Australia; 5Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Introduction: Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability and is usually caused by a CGG expansion in the FMR1 gene and the associated epigenetic silencing. Recent studies have shown that FMR1 intron 1 methylation is significantly associated with verbal cognitive impairment in adults, but this has not been shown in children. Furthermore, variation in FMR1 intron 1 methylation between blood, saliva and buccal samples has not been previously described.

Methods: A cohort of 40 children carriers of FMR1 expanded alleles, depending on their age, were administered either The Mullen Scale of Early Learning, the Wechsler Preschool and Primary Scale of Intelligence III edition or The Wechsler Intelligence Scale for Children IV edition.

Results: Preliminary analysis of 10 participants has shown a significant correlation between FMR1 intron 1 methylation in blood, saliva and buccal samples overall cognitive functioning (p<0.001). There was no significant difference in methylation of this region between tissue types.

Discussion: FMR1 intron 1 methylation can be analysed in saliva and/or buccal swabs samples as a non-invasive alternative to venous blood for diagnosis of FXS. The pending analysis of the entire cohort with additional clinical data aims to unravel the potential prognostic applications of these biomarkers for the type and severity of neurodevelopmental impairments in FXS children.

FP56
THE FIRST EUROPEAN STUDIES OF Lisdexamfetamine dimethylate in children with attention deficit/ hyperactivity disorder (ADHD).
Claudia Gasparian1,2, Tobias Banaschewski3, Michel Lecendreux4, César Soutullo5, Mats Johnson4,2, Alessandro Zuddas6, Colleen Anderson1, Matthew Dauphin7, Andrew Lynette8, Maria Gason5, Lisa A Squires9, Richard Cavigli10, David R Cologna11.
1Shire, São Paulo, Brazil; 2Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; 3Paediatric Sleep Centre and National Reference Centre for Orphan Diseases: Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Robert-Debré University Hospital, Paris, France; 4Child and Adolescent Psychiatry Unit, Department of Psychiatry and Medical Psychology, University of Navarra Clinic, Pamplona, Spain; 5Child and Adolescent Psychiatry Unit, Queen Silvia Children’s Hospital, Gothenburg, Sweden; 6Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; 7Shire, Wayne, PA, United States; 8Shire, Basingstoke, United Kingdom; 9Division of Neuroscience, University of Dundee, Dundee, United Kingdom.

Introduction: Lisdexamfetamine dimethylate (LDX) is a long-acting prodrug stimulant for the treatment of attention-deficit/hyperactivity disorder (ADHD).

Objective: Review efficacy and safety data from two double-blind randomized trials (SPD489-325 and SPD489-326) in patients with ADHD (6–17 years).

Methods: In SPD489-325, patients received placebo, dose-optimized LDX or reference treatment (osmotic-release oral system methylphenidate [OROS-MPH]) for 7 weeks. The primary efficacy measure was ADHD Rating Scale IV (ADHD-RS-IV) total score. Statistical comparison of LDX versus OROS-MPH was not pre-specified. In SPD489-326, a 2–26-week open-label LDX treatment period preceded a 6-week, placebo-controlled, randomized-withdrawal period (RWP). The primary endpoint was treatment failure (≥50% increase in ADHD-RS-IV total score and ≥2-point increase in Clinical Global Impressions–Severity score from RWP baseline). Efficacy was assessed in the full analysis set.

Results: In SPD489-325 (n=317), placebo-adjusted least-squares-mean changes in ADHD-RS-IV total score from baseline to endpoint were: LDX, −18.6 (95% confidence interval [CI] −21.5, −15.7; p<0.001, effect size 1.80) and OROS MPH, −13.0 (−15.9, −10.2; p<0.001, 1.26). In SPD489-326 (n=153), the open-label period included 5% of patients receiving LDX and placebo, respectively, met treatment failure criteria at RWP endpoint (difference = −51.7%, 95% CI −65.0%, −38.5%; p<0.001). Treatment-emergent adverse events occurring in ≥10% of LDX-treated patients were decreased appetite, headache, decreased weight, insomnia, anorexia and nasopharyngitis.

Conclusions: Short-term LDX treatment improved symptoms of ADHD in children and adolescents. Continued LDX treatment was associated with maintenance of efficacy compared with placebo. The LDX safety profile was generally consistent with that of stimulant therapy.

Supported by funding from Shire.

FP57
PHARMACOKINETICS AND PHARMACODYNAMICS OF THE PRODRUG STIMULANT LISDXAMFETAMINE DIMESYLATE IN CHILDREN AND ADOLESCENTS WITH ADHD.
Claudia Gasparian1,2, David R Cologna3,4, Shawn Sorosorn1, James Ermes5, Ben Adey6, Lisa A Squires9, Shire, São Paulo, Brazil; 3Division of Neuroscience, University of Dundee, UK, United Kingdom; 4Shire, Eysins, Switzerland; 5Shire, Wayne, PA, USA.

Introduction: Data will be presented on the systemic exposure to d-amphetamine and the duration of therapeutic action of the d-amphetamine prodrug lisdexamfetamine dimethylate (LDX).

Methods: In study NRP104.103, plasma d-amphetamine was measured after single doses of LDX (30mg, 50mg or 70mg) in patients (6–12 years) with attention-deficit/hyperactivity disorder (ADHD). Study SPD489-325 was a 7-week, randomized, double blind, placebo- and active-controlled trial of LDX (30mg, 50mg or 70mg) in patients (6–17 years) with ADHD. Osmotic-release oral system methylphenidate (OROS-MPH) was the reference treatment. On days 0, 28 and 49, patients were assessed using the Conners’ Parent Rating Scale-Revised (CPRS-R) at 10:00, 14:00 and 18:00h following dosing at 07:00h.

Results: Of 18 patients randomized in NRP104.103, 17 completed the study. Plasma d-amphetamine concentrations peaked with mean T_{max} in the range 3.41–3.58h, and declined with mean half-life in the range 8.61–8.90h. Of 336 patients randomized in SPD489-325, 317 comprised the full analysis set and 196 completed the study. Compared with placebo, both LDX and OROS-MPH treatment significantly improved CPRS-R scores at all three assessment times (p<0.001) with effect sizes of 1.24, 1.41 and 1.30 for LDX and 1.036, 0.976 and 0.922 for OROS-MPH, respectively. Post-hoc analyses showed improvements were significantly greater (p<0.02) for LDX than OROS-MPH, with effect sizes of 0.387, 0.435 and 0.377 at each time point.

Conclusions: Following an early morning dose of LDX, improvements in CPRS-R scores in children with ADHD are maintained throughout the day, consistent with the plasma d-amphetamine concentration-time profile.

Supported by funding from Shire.

FP58
ANALYSIS OF MOTOR PERFORMANCE IN INFANTS WITH CONGENITAL HYPOTHYROIDISM WHO BEGAN TREATMENT IN THE FIRST MONTH OF LIFE.
Mílya Romero Patres1,2, Maura Mike Fukujima Goto3, Michelle P C Ouo1, Maria Cecília M P. Lima4, Vivian Freitas3, Carolina Taldejo Mendes Santos4, Denise Castilho Cabrera Santos5,6,7,8,9.
1Human Movement Sciences Graduate Program, School of Health Sciences, Methodist University of Piracicaba (UNIMEP), Brazil; 2Department of Pediatrics, Faculty of Medical Science, State University of Campinas (FCM/UNICAMP), Brazil; 3Doctoral student, Faculty of Medical Science, State University of Campinas (FCM/UNICAMP), Brazil; 4PhD, Department of Development Human and Rehabilitation, Faculty of Medical Sciences, State University of Campinas (FCM/UNICAMP), Brazil; 5CIPOF, Faculty of Medical Sciences, State University of Campinas (FCM/UNICAMP), Brazil.

Abstract: Congenital hypothyroidism (CH) is an endocrine disease caused by thyroid hormone deficiency, which leads to neurological disorders if not treated adequately.
**FP61**

**MODULATION OF THE TMS-EVOKED N100 DURING A GO/NO GO TASK IN CHILDREN WITH ADHD**

Elisa D’Agati1, Thomas Hoegl2, Gabriel Dippel, Paolo Curatolo3, Stephan Bender4, Oliver Krasz5, Gunther H. Moll, Hartmut Heinrich3. 1Tor Vergata University Rome Italy; 2University of Erlangen-Nürnberg; 3University of Dresden, Germany

**Introduction:** The electroencephalographic response following transcranial magnetic stimulation after 100 ms (TMS-evoked N100) is of special interest for the investigation of cortical inhibitory deficits in Attention Deficit Hyperactivity Disorder (ADHD). In healthy subjects, the TMS-evoked N100 decreases during motor response preparation and movement execution and increases during response inhibition. The aim of this study is to investigate the modulation of TMS-evoked N100 at stages of response preparation, activation, execution and inhibition in ADHD patients during a go/no-go task.

**Methods:** 18 children with ADHD and 19 typically developing children, aged 10 to 14 years, all right handed were assessed. TMS was delivered over the left motor cortex, the TMS-N100 was measured at electrode P3. The TMS-evoked N100 was determined at rest and at different time points (50 ms before S2; 150, 300 and 500 ms after S2) in a cued go/no-go task (S1-S2 paradigm).

**Results:** Though the TMS-evoked N100 was not found to be significantly reduced at rest in the ADHD group, a smaller increase in go trials and a smaller decrease after inhibiting a response compared to typically developing children were observed. In go trials, a lower TMS-evoked N100 was associated with a smaller variability of reaction times.

**Conclusion:** A reduced modulation of the TMS-evoked N100 amplitude at response preparation and inhibition during a go/no-go task extends the picture of inhibition deficits at the cortical level in ADHD underlying the relevance of the TMS-evoked N100.

---

**FP62**

**CORRELATION WITH URINARY NONYLPHENOL LEVELS AND CLINICAL SYMPTOMS IN CHILDREN WITH ATTENTION-DEFICIT HYPERACTIVITY DISORDER**

Jung-Chieh Du1, Ching-Jung Yu2, Mei-Lien Chen2, Winnie Yang1. 1Taipei City Hospital, Zhongshiao Branch, Taiwan; 2National Yang Ming University, Taiwan

**Objectives:** Animal studies had revealed that young mice exposed to p-nonylphenol (NP), a kind of alkyphenols, might develop motor hyperactivity at adolescence, probably by inhibiting the growth of dopaminergic neurons. This study aimed at clarifying the association between p-nonylphenol (NP) exposure and the clinical symptoms of attention-deficit hyperactivity disorder (ADHD) in children.

**Methods:** From July, 2012 to June, 2013, all children newly diagnosed as ADHD in Taipei City Hospital, Zhong-Xiao branch and Yang-Ming branch, were invited to join this study. The diagnosis of ADHD was based on the criteria of DSM-IV-TR. The severity of clinical symptoms of ADHD was quantified by SNAP-V rating scales, including parent-, teacher- and teacher-rating versions. Blood lead level and urinary NP concentration were analysed for each participant.

**Results:** In total, 35 children with ADHD and 33 normal children as control subjects were enrolled in this study. The average blood lead levels in both groups were similar (1.4±0.6 vs 1.3±0.9μg/dL, p=0.49). However, children with ADHD had significantly higher urinary NP concentration than normal controls (5.0±2.3 vs 3.7±2.2 ppb, p=0.02). Although there was no correlation between urinary NP concentration and well-known epilepsy with unexpected SCS found on digital dense array electroencephalography (dEEG).

**FP59**

**THE IMPORTANCE OF IDENTIFYING NEUROPSYCHOMOTOR DELAYS IN THE DEVELOPMENT OF YOUNG CHILDREN**

Marcia Regina Machado Santos Valiati1, Sergio Antonio Antoniuk2. 1Universidade Federal Do Parana, Brazil; 2UFPR, Brazil

**Introduction:** Pre-Schools are the locus of observation of child, enabling prevention and intervention of those considered at risk. This study identified neuropsychomotor development delays in 3 to 42 month old children. It discussed of educators’ knowledge about phases of development.

**Methods:** The study was a prospective trial conducted in nine Pre-School. Caretakers completed a questionnaire socioeconomic and the development of the children. Educators answered on child development and signs of delay noted. The children were evaluated and reevaluated by the Scales Bayley II - Screening Test, in the cognitive, language and motor areas. The sample comprised of 343 children both sexes, with similar socioeconomic conditions receiving the same standard of care. Educators received training and parents attended lectures.

**Results:** 343 children assessed, performance was lower than expected mainly in expressive communication, followed by receptive communication, fine motor, gross motor and cognitive. After six months, 313 (91.2%) were reassessed and 18.2% of them had moved from competent or non-competent (risk or emerging risk). Age as the variable? was not significant.

**Conclusion:** Infants with CH who initiated treatment in the first month of life exhibited gross motor performance comparable to infants without CH regarding gross motor skills, but a poorer performance regarding fine motor skills.

---

**FP31**

**NEUROPSYCHOLOGICAL CORRELATIONS BETWEEN SUBCLINICAL SPIKES AND DOPAMINERGIC FUNCTION IN CHILDREN WITH ADHD**

Elisa D’Agati1, Thomas Hoegl2, Gabriel Dippel, Paolo Curatolo3, Stephan Bender4, Oliver Krasz5, Gunther H. Moll, Hartmut Heinrich3. 1Tor Vergata University Rome Italy; 2University of Erlangen-Nürnberg; 3University of Dresden, Germany

**Introduction:** "Subclinical Spikes" (SCS) are electrographic spikes without known or observable clinical seizure manifestations, and may be associated with neuropsychological, behavioural and attentional impairments. [Mintz et al. 2009]

**Methods:** Retrospective review and analysis of patients without CH regarding gross motor skills, but a poorer performance regarding fine motor skills.

**Results:** Significant spike suppression. Five (50%) had a repeat NP assessment (37%) were treated with antiepileptic drugs (AED), all associated with significant spike suppression. Five (50%) had a repeat NP assessment after a one-year interval, all with significant NP improvements.

**Conclusion/Discussion:** Unexpected SCS can be found in patients presenting with cognitive and/or behavioural disorders not related to epilepsy, and may be associated with impairments of neurological and NP functioning. AEDs can result in improvements in clinical and NP surrogate markers in some patients, associated with concomitant spike suppression, suggesting the concept of “Epilepsy Spectrum Disorders”. Further longitudinal studies are needed to define these associations.
was no significant correlation found between urinary NP concentration and total SNAP IV rating scales, a trend association still could be observed between urinary NP levels and hyperactivity/impulsivity scores in teacher-rating SNAP IV scales (Spearman $r=0.29$, $p=0.09$, $n=21$).

**Conclusions:** Significantly elevated urinary NP levels were found in children with ADHD and probably associated with more severe hyperactivity/impulsivity symptoms. These results implied that exposure to NP may be associated with ADHD, especially hyperactivity/impulsivity symptoms.