Main Article Content
Abstract
Children’s neurological development is influenced by what they do and do not experience. Early experiences and the environments in which they occur can alter gene expression and affect long-term neural development. Today, discretionary screen time (DST), often involving multiple devices, is the single main experience and environment of children. Various screen activities are reported to induce structural and functional brain plasticity in adults. However, childhood is a time of significantly greater changes in brain anatomical structure and connectivity. Digital natives exhibit a higher prevalence of screen-related ‘addictive’ behaviours that reflect impaired neurological reward-processing and impulse-control mechanisms. Associations are emerging between screen dependency disorders (SDD) such as Internet Addiction Disorder and specific neurogenetic polymorphisms, abnormal neural tissue and neural function. Although abnormal neural structural and functional characteristics may be a precondition rather than a consequence of addiction, there may also be a bidirectional relationship. As is the case with substance addictions, it is possible that intensive routine exposure to certain screen activities during critical stages of neural development may alter gene expression resulting in structural, synaptic and functional changes in the developing brain leading to SDD, particularly in children with predisposing neurogenetic profiles. There may also be compound/secondary effects on paediatric neural development. Screen dependency disorders, even at subclinical levels, involve high levels of discretionary screen time, inducing greater child sedentary behaviour thereby reducing vital aerobic fitness, which plays an important role in the neurological health of children, particularly in brain structure and function. Child health policy must therefore adhere to the principle of precaution as a prudent approach to protecting child neurological integrity and well-being. This paper explains the basis of current paediatric neurological concerns surrounding SDD and proposes preventive strategies for child neurology and allied professions.
Keywords
Article Details
Copyright (c) 2017 Aric Sigman
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).